
Using Your

by Alex Eames

http://rasp.io/inspiring
http://rasp.io/inspiring

Introduction

Experiment with full colour LEDs

The RasPiO®1 InsPiRing system offers a compact, affordable, easy,
modular way to experiment with programmable full colour (RGB) LEDs.
It works on Raspberry Pi, Arduino, Micro:Bit, ESP8266, ATtiny or pretty
much any micro-controller.

The boards can connect together to make 2D or 3D objects. You can
make all sorts of things. A few ideas are...

• Light Pyramid (Make a Pyramid)

• Internet NTP Clock (NTP Clock)

• TV simulator security device (Make a TV Simulator)

• Animated signage

• Dials & gauges to show output from (analog) sensors

• Persistance of vision projects

• Natural light alarm clock

• Mood light

• Controllable light source for macro photography/videography

• Christmas or other holiday decorative lighting

• Eye-catching wearable

All Python code in this guide and in the RasPiO InsPiRing GitHub
Repository is in Python 3. All scripts may be run with...
python3 scriptname.py

...but you will need to download the scripts and make sure SPI is
enabled before you start. (see Pi Configuration & Software Installation)

1 RasPiO is a trademark of Alex Eames. Raspberry Pi is a trademark of the Raspberry Pi
Foundation

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 2 of 41

http://rasp.io/inspiring
https://github.com/raspitv/raspio-inspiring
https://github.com/raspitv/raspio-inspiring
http://rasp.io/inspiring

 InsPiRing Instructions

RasPiO InsPiRing LEDs are incredibly bright. Please be sensible (or
wear shades).

The RasPiO InsPiRing driver pHAT uses the SPI ports on the Raspberry
Pi. All other GPIO ports2 are broken out and available for use in your
projects. The BCM GPIO port numbering scheme is used. This is a
perfect match for GPIO Zero.

Hardware Technical Overview

SPI
The RasPiO InsPiRing driver pHAT uses hardware SPI on the
Raspberry Pi. CE0 is connected to the MCP3008 analog to digital
converter (if fitted). CE1 is connected to the 74AHCT125N buffer chip
(1OE & 4OE). This mechanism allows simultaneous use of both SPI
channels. MOSI and SCLK are shared, but the buffer chip prevents the
'wrong' signals from reaching the LEDs. MISO is not used by the LEDs
(but is used by the optional MCP3008).

Buffer Chip – Why?
A 74AHCT125N buffer chip was selected for a couple of reasons...

1. It enables the LEDs to be powered at 5V and driven by 5V logic.
The Pi can only drive 3V3 logic on its own. This is considered a
robust method which also protects the Pi and enables the LEDs to
run at maximum brightness.

2. SK9822 LEDs don't have a chip-select mechanism built-in. So if
you want to use more than one device on the Pi's hardware SPI,
the shared MOSI and SCLK channels can cause the LEDs to
behave unpredictably. Tying Pi's CE1 to buffer's 1OE & 4OE
prevents unwanted signals reaching the LEDs and causing
uncontrolled output.

2 Except GPIO26 – pHAT is one hole too short to fit them all

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 3 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Know Your InsPiRing Boards

InsPiRing Driver

GPIO Breakouts (Green)

All GPIO ports3 on the Raspberry Pi are broken out in a single column
across the pHAT. All apart from SPI are available for use.

Two 5V Outputs (Brown)

Holes labelled 12 & 13 next to the buffer chip are able to be used as 5V
outputs on GPIOs 12 & 13. There were two unused outputs on the
74AHCT125N buffer chip, so it was decided to make them available for
use. However, you can still use GPIO12/13 directly on the Pi (as well or
instead) by using the breakout holes in the single column.

3 Except GPIO26

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 4 of 41

RasPiO InsPiRing driver pHAT (basic)

http://rasp.io/inspiring
http://rasp.io/inspiring

LED Board Connections (Blue)

There are two sets of connections for RasPiO InsPiRing LED boards.

The left-hand set (labelled Pi5V) uses the 5V rail from the Raspberry Pi.
For smallish numbers of LEDs (e.g. <50), the Pi can normally deliver
enough current - as long as your power supply is a good one and you
don't have power-hungry devices connected to USB.

The right-hand set is for use with an external 5V source. Connect your
5V supply positive lead to 'Ext 5V' and negative to GND. Do not connect
your external PSU to 'Pi5V' on the wrong side or the two power
supplies will fight each other (it could end badly e.g. fire). The two 'Ext
5V' holes are only connected to each other. They are not connected to
anything else on the board.

C is the clock (SCLK) output after it has passed through the buffer chip
and been level-shifted to 5V.

D is the data (MOSI) output after it has passed through the buffer chip
and been level-shifted to 5V.

C & D are identical on both sides and are connected to each other. If
you want to run two strips in parallel (both doing the same thing) you
can do this as long as you provide power to 'Ext 5V'. It's not absolutely
guaranteed to work, but it usually does.

Power and Ground Rails (Turquoise)

3V3, Pi5V and GND rails are provided. Once the female headers for the
LED boards are soldered in place, there should be four available holes
for each. The GND holes are a little tight up against the buffer chip
socket, but careful assembly enables their full use.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 5 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Optional Analog inputs (Red)

If you purchased the optional ADC upgrade parts you will have eight
analog inputs shown in the red area below...

Vref can be tied to 3V3 (default if jumper fitted) or anything less than
3V3 if you provide an alternative stable voltage reference. The
MCP3008 is powered by 3V3 from the Pi, so cannot have Vref higher
than 3.3V

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 6 of 41

RasPiO InsPiRing driver pHAT with optional Analog (ADC) components

http://rasp.io/inspiring
http://rasp.io/inspiring

Straight-8

The Straight-8 has eight LEDs and three choices of inputs and outputs
so it's possible to join them together at 180°, 90° or 45° directly. But you
can join them at any other angle you like using wires.

The labels on the input side (next
to LED 0) are a bit hard to read as
the V-groove from manufacturing
has partially obliterated them .
But it's easy when you know how.
Essentially we have D for data, C
for clock, G for Ground and 5V for
+5V. Inputs are on the left and
outputs on the right. You can plug
the input side straight into the
driver board or connect wires or
headers to it. The choice is yours.

The output side (next to LED 7) is used for connecting to the input side
of another RasPiO InsPiRing board to make a longer chain...

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 7 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Some Connection Options/Ideas

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 8 of 41

Two Straight-8s chained together

Direct connection to driver Connected to driver with jumper wires

Direct driver 90°

Chain of 3 at 90° to each other

http://rasp.io/inspiring
http://rasp.io/inspiring

Circle

The RasPiO InsPiRing circle
has 24 LEDs. This makes it
suitable for use as a clock.

Its circular nature makes it
suitable for use as a 'ring
light' or ring flash for lighting
up small to medium-sized
items in photography or
videography.

It's also great for patterns of
light and many other
applications.

Input connections
are to the right of
LED 23.

Output connections
are to the left of
LED 23.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 9 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Triangle

The RasPiO InsPiRing
triangle also has 24
LEDs so could be
used for a quirky-
shaped clock or as
three separate 8-
segment indicators.

Combining three
triangles makes a
triangular pyramid
shape. You could even
combine four to make
a square pyramid.

There are extra 5V
and GND
connections at the
corner of LEDs 7 &
8. (Useful for joining
pyramids and if
additional external
power is required.)

Input connections
are at the corner of
LEDs 0 & 23.

Output connections
(order reversed)
are at the corner of
LEDs 15 & 16.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 10 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Assembly Instructions

Driver Board Assembly
RasPiO InsPiRing driver board assembly is pretty straightforward. If
you prefer written instructions, they start on this page. For everyone
else, there's a complete step by step soldering video...

https://youtu.be/TyhNENlXlYk

The buffer chip and socket slightly overlap four GND pins. If you want
full access to these, solder the chip socket as close as you can to the
RasPiO logo. (A small blob of Blu-tack can be used to ensure the chip
socket location is controlled.)

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 11 of 41

http://rasp.io/inspiring
https://youtu.be/TyhNENlXlYk
http://rasp.io/inspiring
https://youtu.be/TyhNENlXlYk

Suggested assembly order (basic board, no ADC extras)...

1. 14-pin chip socket for 74AHCT125N (as close to RasPiO logo as
you can – use Blu-tack)

2. optional if you want to fit them 2x 10k resistors joining both C and
D to GND

3. 2x 4-way female headers
4. 40-way female header on underside of board
5. 74AHCT125N chip

Suggested assembly order (with ADC extras)...

1. 14-pin chip socket for 74AHCT125N (as close to RasPiO logo as
you can – use Blu-tack)

2. 16-pin chip socket for MCP3008
3. optional if you want to fit them 2x 10k resistors joining both C and

D to GND
4. 2x 1µF capacitor
5. 2x 4-way female headers
6. 2-way male header between Vref and 3v3 + jumper joining these

pins
7. 8-way female header
8. 40-way female header on underside of board
9. 74AHCT125N & MCP3008 chips

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 12 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Adding Headers to Straight-8, Triangle or Circle

Two headers are provided with each shape...
1. a 4-way right-angled male
2. a 4-way straight female

But that doesn't mean you have to use them. Use whatever suits your
project. In some cases you may wish to solder wires directly to the
through-holes as it may suit your project better. I've made a video
showing how I used the supplied headers to connect straight-8 boards
nicely. Have a look and then decide how you want to do it...

https://youtu.be/ySVLg9muw9c

If you are consistent, all your boards can fit together. I generally use a
male header on the input side and a female header on the output side.
It enables a board to be plugged straight into the driver board. The
important thing is to think about what you want to do and choose the
most suitable method.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 13 of 41

http://rasp.io/inspiring
https://youtu.be/ySVLg9muw9c
http://rasp.io/inspiring
https://youtu.be/ySVLg9muw9c

Pi Configuration & Software Installation

Enable SPI, then Reboot

There are a couple of ways to enable SPI on the Pi.

If you're happy directly editing
/boot/config.txt
you can ensure that
dtparam=spi=on
is not commented out with a #.

If you prefer using the GUI, click
the raspberry icon (top-left), then
choose Preferences >
Raspberry Pi Configuration

Then click the interfaces tab,
ensure that SPI is set to 'enabled' and click OK.

Whichever way you choose, you will need to reboot the Pi either with
sudo reboot or from the shutdown menu.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 14 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Install spidev for Python

So now we've enabled SPI, we need to be able to talk to it from Python.
We use a package called python3-spidev which we might need to install
(if you're not using a recent Raspbian). An internet connection is
required for this. Here are the commands...

sudo apt-get update
sudo apt-get install python3-spidev python-spidev

If you have a recent Raspbian, you may find this is already installed. If
it is you'll get this message...

python-spidev is already the newest version.
python3-spidev is already the newest version.
0 upgraded, 0 newly installed, 0 to remove and 0 not
upgraded

Download Python Class & Examples

You should now be ready to grab the Python examples from GitHub.
From a terminal window, enter...

cd
git clone https://github.com/raspitv/raspio-inspiring.git

The number of objects will increase over time as more projects are
added.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 15 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

This should create a directory called raspio-inspiring under
/home/pi All of the examples can be found there. Go there now...

cd /home/pi/raspio-inspiring
ls

The number of scripts will increase over time as more projects are
added.

Pydoc Documentation

Before we begin, if you ever forget how to use the apa class you can
find some help in pydoc. From within the /home/pi/raspio-
inspiring directory, Just type pydoc apa and you will see the on-
screen help...

There are several example scripts to illustrate how to use the
apa Python class and some useful programming principles.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 16 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Python apa Class Explanation

The most important concept to understand is that the 'current' values
for each LED are stored in a list variable (array) which itself contains a
list variable [brightness, blue, green, red] for each LED. So it's
a 'list of lists' (called led_values) looking something like this...

[[brightness, blue, green, red], [brightness, blue, green, red],
 [brightness, blue, green, red], ...]

If you want to animate the LEDs you have to think about 'frames' the
same way you would in video. Each time we write to the LEDs with
ledstrip.write_leds() all of the LEDs are written to with their
current values. There is no way around this because they are chained
together in series. You cannot just 'write' to one LED (except LED 0).
But because SPI is so fast, it doesn't matter. You can easily change the
values for one or more LEDs then write to them all, wait a bit, then write
the next 'frame'. This all happens invisibly fast.

The important point is, nothing is actually sent (written) to the LEDs
until you call ledstrip.write_leds() and then the entire set is
written to. With 24 LEDs and Python, you can get about 100 frames per
second (fps). So with a pyramid (72 LEDs) you should still comfortably
get >30 fps.

Once you understand how it works, you realise that your main program
needs to have a looping rhythm something like this...

1. Determine LED(s) values for next frame
2. Change stored LED(s) values for the next frame
3. Wait until ready
4. Write the LED values
5. Back to 1

Everything you do to decide what the next 'frame' should be comes
between 1 & 2. Now let's look at some examples.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 17 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

example00.py

This is the bare minimum code you need to do something. These 4 lines
will set LED #3 (the 4th LED) to full brightness, full green. Then it will exit
without switching off the LED.

import apa
ledstrip = apa.Apa(24)
ledstrip.led_set(3, 31, 0, 255, 0)
ledstrip.write_leds()

This is example00.py from GitHub but with the comments removed.

Line 1: brings in the apa class so we can use it.
Line 2: sets up an object ledstrip with 24 LEDs (all OFF initially).
Line 3: sets LED 3's values to full brightness and full green.
Line 4: writes the current values to all the LEDs.

example01.py

The following simple script shows the use of each available method...

import apa, time
numleds = 24
ledstrip = apa.Apa(numleds)
ledstrip.flush_leds()
brightness = 31
ledstrip.led_set(0, brightness, 0, 0, 255)
ledstrip.write_leds()
time.sleep(2)
ledstrip.zero_leds()
ledstrip.led_set(4, brightness, 255, 255, 255)
ledstrip.write_leds()
time.sleep(2)
ledstrip.reset_leds()

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 18 of 41

http://rasp.io/inspiring
https://github.com/raspitv/raspio-inspiring/blob/master/example00.py
http://rasp.io/inspiring

This is example01.py from GitHub but with the comments removed.

Your Python script needs to be in the same directory as apa.py, which
will normally be /home/pi/raspio-inspiring

At the top of your script, import the apa class
import apa

Set the number of LEDs in our display. The class needs this so it can
set up a list variable led_values that will contain the brightness, blue,
green and red values for each LED.
numleds = 24

Initialise the LEDs (this creates an instance of the class – ledstrip)
ledstrip = apa.Apa(numleds)

numleds can be an integer variable or a hard-coded integer.

Now we can manipulate our LEDs by using the object ledstrip that we
just created.

You have the following methods you can play with to control your
LEDs...

flush_leds() 'wakes up' the LEDs ready for action

led_set() sets values of an LED's Brightness, Blue, Green, Red

write_leds() sends the LED values to all the LEDs via SPI

zero_leds() zeroes all stored led_values without writing to LEDs

reset_leds() switches all LEDs off without changing stored values

In line 4 we ledstrip.flush_leds() This is not strictly necessary as
the LEDs are flushed when write_leds() is called. But I wanted to
show how to use the method. It flushes the LEDs by sending several
bytes of zeros through SPI. This prepares them to receive data.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 19 of 41

http://rasp.io/inspiring
https://github.com/raspitv/raspio-inspiring/blob/master/example01.py
http://rasp.io/inspiring

brightness = 31 sets the global brightness value to maximum.

Next we use...
ledstrip.led_set(number, brightness, blue, green, red)
specifically
ledstrip.led_set(0, brightness, 0, 0, 255)

to set the values of LED number 0's brightness, Blue, Green, Red

number is the LED position number starting at 0

brightness values are integers 0-31 (or 224-255 or 0xE0-0xFF).
0 or 224 or 0xE0 = OFF
31 or 255 or 0xFF = FULL brightness.
This can be used to set the 'global' brightness of each RGB LED.
Any integer value within these ranges will work.

blue, green and red values are integers 0-255 (or hex 0x00-0xFF)

If you want "black" or "OFF", you can simply use brightness of 0, 224
or 0xE0, then the LED will be OFF regardless of what colour values you
give it.

Line 7: ledstrip.write_leds() initiates the LEDs, then writes to SPI
the contents of led_values, namely 4 data bytes for each LED:
brightness, blue, green, red. This sets the brightness and
colours of each RGB LED.

Then, after a 2 second sleep, all the values in list variable led_values
are zeroed without sending (writing) them to the LEDs
time.sleep(2)
ledstrip.zero_leds()

Then we set LED 4 to be full brightness, white (all 3 colours FULL) and
write the values of the LEDs to SPI...
ledstrip.led_set(4, brightness, 255, 255, 255)

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 20 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

ledstrip.write_leds()

After another 2 second wait,
time.sleep(2)
ledstrip.reset_leds()

switches all LEDs off manually without changing stored led_values,
and the program exits with all LEDs off.

So we've seen simple code examples of how to control one LED at a
time. Now let's do something a bit more interesting and control them all
using loops to change their values quickly.

example02.py

from time import sleep
import apa
numleds = 24 # number of LEDs in our display
brightness = 11 # 0 = OFF, 31 = FULL
ledstrip = apa.Apa(numleds)

try:
 while True:
 for x in range(numleds):
 ledstrip.led_set(x, brightness, 0, 0, 255) # red
 ledstrip.write_leds()
 sleep(1)
 for x in range(numleds):
 ledstrip.led_set(x, brightness, 0, 255, 0) # green
 ledstrip.write_leds()
 sleep(1)
 for x in range(numleds):
 ledstrip.led_set(x, brightness, 255, 0, 0) # blue
 ledstrip.write_leds()
 sleep(1)
finally:
 print("/nAll LEDs OFF - BYE!/n")
 ledstrip.zero_leds()
 ledstrip.write_leds()

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 21 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

This is example02.py from GitHub.

This whole main loop is wrapped in a try: finally: block which
allows us to control what happens on program exit. No matter how the
program exits, the LEDs will be switched off.

The rest of the time, the while True: loop will run forever.

The interesting code here is...
 for x in range(numleds):
 ledstrip.led_set(x, brightness, 0, 0, 255) # red
 ledstrip.write_leds()
 sleep(1)

...in which we are using a loop to iterate through all of our LEDs and
change their values in turn. Once we've changed them all, we write to
them, pause for 1 second (s), then move on to the next section.

Our code cycles through red, green and blue, waiting 1s between each
colour change.

So that's shown you how to use a loop to manipulate multiple LED
values. Now let's do something a bit faster and more fun and show you
a few more tricks.

In the next script (example03.py), we'll use a function to do most of the
repetitive work. We're going to cycle up (lines 9-12) through all of our
LEDs, switching them on in turn, waiting 0.04s between each one.

Once we've cycled up through switching them on, we'll cycle back
down switching them off (lines 14-17).

Then we'll do it all again with a different colour. This will also give you
an idea of how to mix the colours.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 22 of 41

http://rasp.io/inspiring
https://github.com/raspitv/raspio-inspiring/blob/master/example02.py
http://rasp.io/inspiring

example03.py

from time import sleep
import apa
numleds = 24 # number of LEDs in our display
delay = 0.04 # seconds between frames
brightness = 6 # 0=OFF (224 or 0xE0), 31=FULL (255 or 0xFF)
ledstrip = apa.Apa(numleds)

def updown(b,g,r):
 for led in range(numleds):
 ledstrip.led_set(led, brightness, b, g, r)
 ledstrip.write_leds()
 sleep(delay)

 for led in range(numleds -1, -1, -1):
 ledstrip.led_set(led, brightness, 0, 0, 0)
 ledstrip.write_leds()
 sleep(delay)
try:
 while True:
 updown(255,0,0) # Blue
 updown(0,255,0) # Green
 updown(0,0,255) # Red
 updown(255,150,0) # Cyan
 updown(0,150,255) # Yellow
 updown(150,0,255) # Magenta
 updown(255,255,255) # White
 #delay = delay * 0.9 # speeds up each iteration

finally:
 print("/nAll LEDs OFF - BYE!/n")
 ledstrip.reset_leds()

This is example03.py from GitHub. You now have pretty much all the
tools and programming constructs that you need to make your own
animations. All you need is your imagination and some
experimentation.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 23 of 41

http://rasp.io/inspiring
https://github.com/raspitv/raspio-inspiring/blob/master/example03.py
http://rasp.io/inspiring

Programs in the GitHub Repo

There are plenty more examples in the GitHub repo, but the above
should be enough to get you started on “doing your own thing”. Here is
a full list.

example00.py Bare minimum code to make an LED do something
(see example00.py)

example01.py Demonstrates all the methods available in the apa
class (see example01.py)

example02.py Shows using loops to set all the LED values
efficiently (see example02.py)

example03.py Combines loops and a function to make multi-
coloured 'wipes'. Also RGB colour mixing
(see example03.py)

analog-pots.py Control LED colours with potentiometers and an
optional ADC (see Analog Potentiometer Control)

clock.py NTP clock (see NTP Clock)

TVSimulator.py Make it look (from outside at night) like someone is
watching TV (see Make a TV Simulator)

apasnake.py Snakes around a pyramid increasing the colour
brightness around each face. Introduction to using
a mathematical formula & loop to control the LEDs.
Will also work with circle and triangle with a tweak
(see Make a Pyramid)

updown-pyramid.pyScrolling up and down controlling each 'level' of
the LEDs on a 3-sided 72-LED pyramid. Rather an
eye-catching visual effect (see Make a Pyramid)

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 24 of 41

http://rasp.io/inspiring
https://github.com/raspitv/raspio-inspiring/blob/master/apasnake.py
https://github.com/raspitv/raspio-inspiring/blob/master/updown-pyramid.py
https://github.com/raspitv/raspio-inspiring/blob/master/example03.py
https://github.com/raspitv/raspio-inspiring/blob/master/example02.py
https://github.com/raspitv/raspio-inspiring/blob/master/example01.py
https://github.com/raspitv/raspio-inspiring/blob/master/example00.py
https://github.com/raspitv/raspio-inspiring/blob/master/analog-pots.py
https://github.com/raspitv/raspio-inspiring/blob/master/clock.py
https://github.com/raspitv/raspio-inspiring/blob/master/TVSimulator.py
http://rasp.io/inspiring

NTP Clock

You can use a RasPiO InsPiRing circle or triangle to make a clock. A
triangle clock would be 'quirky' but could be lots of fun. Both shapes
have 24 LEDs. If you want to see what the circular NTP clock looks like,
I made a video of it during the KickStarter campaign...

https://youtu.be/pHPj0LVPgxE

It's quite an easy project. All you have to do is assemble your driver
board (see Driver Board Assembly), then solder a header or wires to
your RasPiO InsPiRing circle or triangle's inputs (see Triangle &
Adding Headers to Straight-8, Triangle or Circle)

Then connect your driver board to the Raspberry Pi and your circle or
triangle to the driver board. (Directly, with wires or jumper wires.)

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 25 of 41

http://rasp.io/inspiring
https://youtu.be/pHPj0LVPgxE
http://rasp.io/inspiring
https://youtu.be/pHPj0LVPgxE

Make sure you've configured your Pi and downloaded the software
from github (see Pi Configuration & Software Installation and Download
Python Class & Examples)

Check you have an internet connection. This is needed so you can grab
the correct time (unless you have a realtime clock on your Pi).

Then run the script from a terminal window with...

cd /home/pi/raspio-inspiring
python3 clock.py

This clock script is a 12-hour version. It uses 2 LEDs for each hour (3
LEDs are shown for the 'hour' in the video, but I eventually decided I
didn't like that, so changed it to 2). Minutes and seconds update every
2.5 (60/24=2.5). Since we don't have 60 LEDs we can't have one for
each minute/second. (But you could possibly do something with
blinking or colour fading if you felt like it.)

There's a walk-through of the code in this video here. The code has
been tweaked slightly to improve it since then, but the ideas explained
are still the same.

You could tweak the script clock.py to make it 24-hour or change the
hourly, half-hourly and quarter-hourly animations. Either way, it's lots
of fun to include in your projects. You could also make a nice case or
mount to present it in.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 26 of 41

http://rasp.io/inspiring
https://youtu.be/XKGL05MMXtA
https://github.com/raspitv/raspio-inspiring/blob/master/clock.py
http://rasp.io/inspiring

Make a TV Simulator

What is a TV simulator? It's a device which can be used to simulate the
lighting effect of watching TV. So when you're out, if someone is
watching your house, you can make it look like you're at home.

Of course you can leave your TV on, but that wastes quite a bit of
power. Also, if you build this with a Raspberry Pi connected to the
internet, you can control it from anywhere in the world with your mobile
phone. You could also program it to run at pre-set or random times.

When you're walking down the street at night you can often see the
light flickering from people's TV sets. Depending on the show, the
flickering effect can vary quite considerably, as can brightness level.
So in my simple Python-based TV simulation script I included some
random elements to give a mixture of short duration and long duration
"scene changes". Those are, of course, completely tweakable.

The advantage of doing this on an internet connected Raspberry Pi is
that you could switch it on and off remotely from anywhere in the
world. How awesome is that? Here's a screenshot from a video clip.
Obviously a still photo doesn't show the flickering, but unless you knew,
or looked straight through the window, you could never tell it wasn't a
TV.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 27 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

This is a really easy project and it works with any of the RasPiO
InsPiRing boards. I used a circle, but 8 LEDs on a straight-8 would also
do just fine.

Just connect the driver board to your Pi, a RasPiO InsPiRing board to
the driver (either directly or with wires) and run the code
TVSimulator.py from the GitHub repo. If you ran through the standard
installation procedures in this guide (see Pi Configuration & Software
Installation) you will already have it at...

/home/pi/raspio-inspiring/TVSimulator.py

The code is very tweakable. You can tweak...

• interval times between 'scene changes' (lines 44 & 48)

• colour intensities (lines 51-53)

• maximum overall brightness (line 7)

You'll notice that the red (line 51) has been limited deliberately because
the output didn't look 'realistic' enough with too much red in.

The possibilities here are great. You could expand the project by...

• using a light sensor to determine whether or not it's dark enough

to bother lighting the LEDs
• switch it on or off via internet connection

• have different 'styles' of light patterns for different types of TV

show
• switch it on at specific or random times of day/night (like a time-

switch)
• add a PIR sensor or microphone trigger

• add sound output

But whatever you do with it, have fun!

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 28 of 41

http://rasp.io/inspiring
https://github.com/raspitv/raspio-inspiring/blob/master/TVSimulator.py
http://rasp.io/inspiring

Analog Potentiometer Control

This project uses the optional MCP3008 components4. It enables you to
control the brightness of each LED colour using potentiometers in the
following circuit...

Circuit Diagram
Connect a 10k potentiometer so that the middle terminal goes to an
ADC channel. The other two terminals go to GND and 3V3. Do this for
channels 0-2 (connections A0, A1, A2).

Build the circuit, connect your RasPiO InsPiRing board, then run the
script analog-pots.py
cd /home/pi/raspio-inspiring
python3 analog-pots.py

4 You will also need three 10k potentiometers, a breadboard/stripboard and some wires

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 29 of 41

http://rasp.io/inspiring
https://github.com/raspitv/raspio-inspiring/blob/master/analog-pots.py
http://rasp.io/inspiring

How it Works
The analog-pots.py script reads the input voltage on channels 0-2 of
the MCP3008 and converts it to a number between 0 and 255. This is
then used to control the LEDs.

Channel 0 = blue, 1 = green, 2 = red

The LEDs are lit with the intensity determined by the analog inputs.
You can mix any colour on the RGB light spectrum by twiddling the
potentiometers (pots).

You should get realtime on-screen output, which will change – along
with the LEDs' intensity as you twiddle the pots.

Check out the colours and the relative positions of the potentiometers
in the photographs below. Bear in mind these were shot at fairly low
brightness (it's really hard to photograph bright LEDs well).

Blue Green Yellow Magenta White
B:15 G:0 R:0 B:0 G:15 R:0 B:0 G:32 R:56 B:15 G:0 R:121 B:15 G:15 R:15

Have fun! And don't forget to tweak the script to make it your own.
Happy colour mixing.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 30 of 41

http://rasp.io/inspiring
https://github.com/raspitv/raspio-inspiring/blob/master/analog-pots.py
http://rasp.io/inspiring

Make a Pyramid

One of my favourite RasPiO
InsPiRing demonstrations
is the pyramid. Made from
three triangles joined
together (I can't wait to
make a square pyramid
with four) it can be quite
mesmerising to watch.

Pyramid Assembly

The pyramid comprises 3 RasPiO InsPiRing triangles 'daisy-chained'
together. The inputs of triangle 1 connect to your Pi or micro-controller.

The outputs (Do & Co) of
triangle 1 connect to the
inputs (Di & Ci) of
triangle 2 (top of photo).

The outputs of triangle 2
connect to the inputs of
triangle 3 (bottom right).

The outputs (Do & Co) of
triangle 3 are unconnected,
(bottom left) but the GND and
5V of all three triangles are
connected together.

It's also a good idea to connect together the spare GNDs at the top of
each triangle. This helps structurally and electrically. You can ignore
the top 5V holes.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 31 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

The above photo shows the connections, but if you want a full walk-
through of the procedure, there is a YouTube video showing how to put
the pyramid together...

https://youtu.be/Yt9tsg5DmtM

Pyramid Anatomy

The LEDs are numbered as follows for programming purposes. This is
the path the signals follow around the pyramid...

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 32 of 41

http://rasp.io/inspiring
https://youtu.be/Yt9tsg5DmtM
http://rasp.io/inspiring
https://youtu.be/Yt9tsg5DmtM

Connect your pyramid wires Di to driver board D, Ci to driver board C,
G to driver board GND and 5V to driver board 5V. Use the appropriate
set of connections for your choice of power supply (explained in the
next section Pyramid Power).

Pyramid Power

If you are powering your pyramid from the Pi's 5V rail, you may well
find that it cannot deliver enough current unless you tweak the
brightness down below 20 (brightness can be 0-31). At full brightness
and full Red/Green/Blue, the pyramid's 72 LEDs can draw more current
than most Pi power supplies can deliver. See SK9822 Power Usage for
more detailed information about current requirements.

External 5V DC PSU

Apart from reducing global LED brightness, another way round this is
to use the second “Ext” set of connectors on the driver board, along
with an external 5V power supply

There are two sets of LED connectors on the driver board. Those
marked in red and labelled “Pi” feed power to the LEDs from the Pi's 5V
rail.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 33 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Those marked in blue and labelled “Ext” feed power to the LEDs from
an external 5V source. Your external 5V source must be connected to
the spare Ext 5V through-hole and GND.

GND, C and D are identical on both sides (connected to each other)

You could also connect an external 5V supply directly to any of the 5V
connections on the the pyramid (3 per triangle). But if you do that,
make sure that you don't connect the LEDs' 5V to the Pi 5V rail or the
PSUs will fight each other and it could potentially end badly (e.g. fire).

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 34 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Pyramid Code
Here are a couple of demonstration scripts to get you started with the
pyramid...

updown-pyramid.py

updown-pyramid.py cycles up and down the pyramid, changing colours
for each iteration.

Things of note about the program are...

levels (line 33) is a list of lists.
Each element in this main list contains a list of LED numbers on the
same level.
e.g. levels[0] contains 24 elements because there are 3 strips of 8
LEDs on the bottom level.
All the other levels have just 6 elements.

By grouping them in levels, we are able to control each level separately.

We do this by iterating through the levels and through the LEDs on each
level using nested loops...
for level in levels:
 for led in level:
 ledstrip.led_values[led] = [brightness, b, g, r]

Then we manipulate ledstrip.led_values directly as this makes it
easy for us to directly over-write the values for the LEDs without using
ledstrip.led_set()

The rest of the program is very similar to example03.py
(I ripped code from updown_pyramid.py when I wrote example03.py)

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 35 of 41

http://rasp.io/inspiring
https://github.com/raspitv/raspio-inspiring/blob/master/updown-pyramid.py
http://rasp.io/inspiring

apasnake.py

apasnake.py snakes its way round the pyramid from LED 0 to LED 71
increasing the intensity by 10 for each successive LED on each
triangle. Once it gets to the end, it repeats the process, cycling through
a set sequence of colours.

You can do some very complex and flashy things with these LEDs.
Once you've decided what you want to do, you have to devise
some code to be able to do it.

apasnake.py starts to show you how you can use a mathematical
formula, to loop through all the LEDs, making them change the way
that you want.

What I wanted to do was vary the colour intensity of the LEDs on
each triangle identically. The first LED should have intensity
of 10 and each successive LED should increment 10 more.
e.g. LED0=10, LED5=60, LED23=240

But I want the second triangle to be exactly the same.
So LED25 should be the same as LED0, LED47 same as LED23 etc.
This is what makes it slightly complex, but I figured it out.

The main 'guts' of this code is this bit here...

for y in range(numleds): # (B), G, R
 ledstrip.led_values[y] = [brightness, ((y+1)*10 - (y // 24)*240), 0, 0]
 ledstrip.write_leds()
 sleep(delay)

So we're looping through 0 to numleds, (0 to 72, stops at 72 so 71 is the
last number processed) on a pyramid.
The loop iterator y is the LED we're currently working on.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 36 of 41

http://rasp.io/inspiring
https://github.com/raspitv/raspio-inspiring/blob/master/apasnake.py
https://github.com/raspitv/raspio-inspiring/blob/master/apasnake.py
http://rasp.io/inspiring

In the first loop iteration, y=0.
This gives us...
((y + 1) * 10 - (y // 24) * 240)
(1 * 10 - (0 // 24) * 240)
(10 - 0) = 10

The // integer division makes this work the same for each triangle.
For triangle 1, LEDs 0-23, (y // 24) * 240 = 0 * 240 = 0
For triangle 2, LEDs 24-47, (y // 24) * 240 = 1 * 240 = 240
For triangle 3, LEDs 48-71, (y // 24) * 240 = 2 * 240 = 480

for LED5 we get...
((y + 1) * 10 - (y // 24) * 240)
(6 * 10 - (6 // 24) * 240)
(60 - 0) = 60

for LED47 (the last LED on triangle 2) it should give 240
((y + 1) * 10 - (y // 24) * 240)
(48 * 10 - (47 // 24) * 240)
(480 - (1 * 240) = 240

It can be quite difficult (if you're not a mathematician) to work out what
your formula should be, but just take it one step at a time, testing as
you go.

The more you do it, the better you get at it too. This is where all that
nasty algebra we did in school (and never understood what it was
useful for) shows its true worth.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 37 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Specifications

Board Dimensions

LEDs are SK9822 (click here for the datasheet) spaced 1cm apart.

RasPiO InsPiRing
Product Name

Board Dimensions
Number of

SK9822 LEDs

 Straight-8 10 x 1cm 8

Triangle 24
Equilateral triangle of side 10cm.

External to internal edge 1cm
24

Circle 24
Circle of external diameter 10cm,

internal diameter 8cm
24

SK9822 Power Usage

Based on actual measurements using RasPiO InsPiRing driver board
and 24 SK9822 LEDs, all powered from the 5V rail on a Raspberry Pi 3B
with official 2.5A Pi power supply.

Single SK9822 LED Current Consumption

At rest (224,0,0,0) 0.28 mA

At full RGB brightness (255,255,255,255) 51 mA

Full brightness, full Red (255,0,0,255) 17.7 mA

Full brightness, full Green (255,0,255,0) 17.7 mA

Full brightness, full Blue (255,255,0,0) 17.5 mA

Summing Full brightness R, G & B gives 52.9 mA but there may some
slight current limiting from the Pi at that level (24 LEDs pulling >1.2 A).
In the data sheet the LEDs are rated at 20 mA current limited for each
colour. So the maximum you could possibly pull would be 60 mA per
RGB LED. The SK9822 uses current limiting rather than PWM for global
brightness.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 38 of 41

http://rasp.io/inspiring
http://rasp.io/wp-content/uploads/2017/06/SK9822_LED_Datasheet.pdf
http://rasp.io/inspiring

So if you want maximum brightness white, budget for 60 mA per LED.
For most applications, you can likely manage with about half of that as
you don't usually have all the LEDs at full brightness at the same time.

For example, with a pyramid (72 LEDs) the theoretical maximum power
draw is 72 x 0.06A = 4.32A

Powered from the 5V rail of a Raspberry Pi 3B, the updown-pyramid.py
program starts 'misfiring' (with my setup and PSU) at global brightness
levels >20-25. If you try to power too much from the Pi's 5V rail you can
even reset the Pi.

But the good news is that full brightness is insanely bright. I run my
pyramid on brightness setting 5 and it's enough for me, but up to 20
works well.

Heat Dissipation

The back of each board is essentially one large ground plane intended
to help dissipate heat from the LEDs. Running constantly at maximum
power, the back of the board can get warm (~45°C – which is
unpleasantly warm to the touch, but will not likely cause burns).

It does mean that if you want to mount the boards in a project, hot-glue
guns might not be adequate. The glue might soften or melt.

Control

SK9822 are controlled by SPI up to a maximum speed of 30 MHz. See
SPI for further information.

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 39 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Sections Yet to Add...

It is hoped to add the following sections with time...

Make an Arrow Project

Using RasPiO InsPiRing with Arduino & FastLED

Using RasPiO InsPiRing with Wemos D1 & FastLED

Using RasPiO InsPiRing with Micro:Bit

Further project ideas as they arise

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 40 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring

Final Word

You should now have a thorough overview of how to use the RasPiO
InsPiRing system.

I hope you have a lot of fun with it. There is always more to learn and
further to go. As time goes by, I hope to add more to this guide with
more ideas for projects.

You can check for the latest version at http://rasp.io/inspiring

And if you haven't yet got yourself a RasPiO InsPiRing kit, or need
another, you can get that from here as well...

http://rasp.io/ inspiring

Using RasPiO InsPiRing v1.0 © Alex Eames 2017 41 of 41

http://rasp.io/inspiring
http://rasp.io/inspiring
http://rasp.io/inspiring
http://rasp.io/inspiring
http://rasp.io/inspiring
http://rasp.io/inspiring

	Experiment with full colour LEDs
	Hardware Technical Overview
	SPI
	Buffer Chip – Why?

	Know Your InsPiRing Boards
	InsPiRing Driver
	GPIO Breakouts (Green)
	Two 5V Outputs (Brown)
	LED Board Connections (Blue)
	Power and Ground Rails (Turquoise)
	Optional Analog inputs (Red)

	Straight-8
	Some Connection Options/Ideas

	Circle
	Triangle

	Assembly Instructions
	Driver Board Assembly
	Suggested assembly order (basic board, no ADC extras)...
	Suggested assembly order (with ADC extras)...

	Adding Headers to Straight-8, Triangle or Circle

	Pi Configuration & Software Installation
	Enable SPI, then Reboot
	Install spidev for Python
	Download Python Class & Examples
	Pydoc Documentation

	There are several example scripts to illustrate how to use the apa Python class and some useful programming principles.
	Python apa Class Explanation
	example00.py
	example01.py
	example02.py
	In the next script (example03.py), we'll use a function to do most of the repetitive work. We're going to cycle up (lines 9-12) through all of our LEDs, switching them on in turn, waiting 0.04s between each one.
	Once we've cycled up through switching them on, we'll cycle back down switching them off (lines 14-17).
	Then we'll do it all again with a different colour. This will also give you an idea of how to mix the colours.
	example03.py

	Programs in the GitHub Repo
	NTP Clock
	Make a TV Simulator
	Analog Potentiometer Control
	Circuit Diagram
	How it Works

	Make a Pyramid
	Pyramid Assembly
	Pyramid Anatomy
	Pyramid Power
	External 5V DC PSU

	Pyramid Code
	updown-pyramid.py
	apasnake.py

	Specifications
	Board Dimensions
	SK9822 Power Usage
	Heat Dissipation
	Control

	Sections Yet to Add...
	Final Word

